في 6 دقائق.. سيراميكا يقترب من لقب كأس الرابطة بثنائية أمام الطلائع «فيديو»
تاريخ النشر: 8th, August 2024 GMT
عاد نادي سيراميكا كليوباترا للتقدم من جديد على طلائع الجيش في المواجهة التي تقام حاليا، على ملعب الدفاع الجوي، بنهائي كأس الرابطة.
ونجح سيراميكا في إعادة التقدم من جديد بهدف ثاني عن طريق محمد التوني بعد تمريرة رائعة من زميله صديق إيجولا في الدقيقة 71.
وفي الدقيقة 76، تمكن نادي سيراميكا من إضافة الهدف الثالث بواسطة نجمه المغربي أحمد بلحاج بعد متابعة مميزة للكرة.
المصدر: الأسبوع
كلمات دلالية: طلائع الجيش سيراميكا كليوباترا طلائع الجيش وسيراميكا كليوباترا مباراة طلائع الجيش و سيراميكا كليوباترا اليوم طلائع الجيش و سيراميكا كليوباترا مباراة طلائع الجيش وسيراميكا كليوباترا
إقرأ أيضاً:
نقلة نوعية تعالج ظاهرة الإجابات «الواثقة غير الدقيقة»
أبوظبي (الاتحاد)
أخبار ذات صلةكشف باحثون من جامعة محمد بن زايد للذكاء الاصطناعي عن نهج مبتكر يُعيد تشكيل عملية التحقق التلقائي من مخرجات نماذج اللغة الكبرى (LLMs)، موفراً حلاً أكثر كفاءة وأقل تكلفة لمعالجة ظاهرة «الهلوسة» التي تُنتج إجابات واثقة لكنها غير دقيقة. الدراسة، التي نُشرت على الموقع الإلكتروني للجامعة، عُرضت في المؤتمر السنوي لعام 2025 للأميركتين في رابطة اللغويات الحسابية (NAACL).
وفقاً للموقع الإلكتروني للجامعة، طوّر الفريق البحثي، بقيادة الباحث ما بعد الدكتوراه تشُووهان شيه، إطار عمل جديداً يُسمى FIRE (التحقق من الحقائق مع الاسترجاع والتحقق التكراري). يعتمد هذا النهج على تقييم مستوى ثقة النموذج في الادعاءات التي يقدمها، ليحدد ما إذا كانت هناك حاجة للبحث عبر الإنترنت أم يمكن الاعتماد على المعرفة الداخلية للنموذج. هذا الأسلوب لا يقلل فقط من التكاليف المرتبطة بالبحث الخارجي، بل يعزز كفاءة التحقق عبر تخزين المعلومات المستردة لدعم تقييم ادعاءات أخرى ضمن النص نفسه.
يقول شيه: «العديد من الادعاءات بسيطة بما يكفي لعدم الحاجة إلى بحوث إضافية، مما يجعل إطارنا أكثر ديناميكية وقابلية للتوسع». وأظهرت الاختبارات على مجموعات بيانات معيارية أنه تم تقليص تكاليف البحث بمعدل 16.5 مرة، مع الحفاظ على أداء مشابه للأطر الأخرى.
وأشار الباحثون، ومنهم روي شينج وبريسلاف ناكوف
، إلى أن النماذج المتقدمة مثل o1-preview من OpenAI، رغم دقتها العالية، قد لا تكون ضرورية دائماً، حيث حقق FIRE مع نماذج أقل تكلفة توازناً مثالياً بين الأداء والتكلفة. كما كشفت الدراسة عن أخطاء في مجموعات البيانات المعيارية، مما يبرز الحاجة إلى تحسين هذه المعايير لضمان دقة أعلى في العالم الحقيقي، حسبما جاء في تقرير موقع الجامعة.
ويفتح FIRE آفاقاً واعدة لمكافحة المعلومات المغلوطة، ليس فقط في النصوص، بل أيضاً في الصور والفيديوهات، مع إمكانية تطويره لدعم التحقق متعدد الوسائط. ويؤكد شيه أن هذا الابتكار قد يُصبح مصدر معرفة إضافياً يعزز قدرات نماذج اللغة الكبرى، مما يُحدث ثورة في معالجة اللغة الطبيعية.