«أبوظبي للسباقات الذاتية» في «ياس» 27 أبريل
تاريخ النشر: 23rd, April 2024 GMT
أبوظبي (وام)
تنطلق السبت المقبل النسخة الأولى من دوري أبوظبي للسباقات الذاتية، والذي يقام في حلبة مرسى ياس، ويعد الأكبر من نوعه على مستوى العالم.
وتقام المنافسات بمشاركة 8 فرق عالمية من الإمارات، وأميركا، وألمانيا، وسويسرا، والصين، وسنغافورة، وإيطاليا، وألمانيا، وتبلغ جوائزه 2.
ويمثل السباق جزءاً من أسبوع أبوظبي للتنقل، الذي ينطلق اليوم، ويستمر إلى أول مايو المقبل.
ومن بين السيارات المشاركة في السباق 4 سيارات ذاتية القيادة، تنطلق جميعها على المضمار في وقت واحد.
وقال معالي فيصل البناي، مستشار صاحب السمو رئيس الدولة لشؤون الأبحاث الاستراتيجية والتكنولوجيا المتقدمة، الأمين العام لمجلس أبحاث التكنولوجيا المتطورة: «يقوم نموذج سباق دوري أبوظبي باستثمار أفضل المهارات في مجالات البرمجة وخوارزميات الذكاء الاصطناعي وتطوير البرمجيات، وهي إحدى مهارات المستقبل».
وأضاف معاليه «من خلال توظيف هذه القدرات، نحن نفتح آفاقاً جديدة لدفع عجلة البحث والتطوير، ونسهم بشكل فعال في جعل أبوظبي محوراً عالمياً للابتكار».
وتشارك «أدنوك » في دعم هذا الحدث بصفتها الراعي الرئيس، وذلك في إطار دعمها للجهود الهادفة لتطوير التقنيات الحديثة وتطبيقات الذكاء الاصطناعي، بما يشمل تكنولوجيا سباقات السيارات ذاتية القيادة.
وقال معالي الدكتور سلطان أحمد الجابر، وزير الصناعة والتكنولوجيا المتقدمة، العضو المنتدب والرئيس التنفيذي لأدنوك ومجموعة شركاتها «تماشياً مع توجيهات القيادة الرشيدة بتوظيف التكنولوجيا المتقدمة والابتكار وتحقيق الريادة في تطبيقات الذكاء الاصطناعي والتحول الرقمي، تعمل أدنوك على دمج هذه التقنيات في كافة جوانب أعمالها لضمان مواكبتها للمستقبل، وتعزيز مساهمتها في دعم المحتوى الوطني ونمو واستدامة القطاعات الصناعية والاقتصادية والاجتماعية».
وأضاف معاليه «تأتي رعاية أدنوك لهذا الحدث الأول من نوعه، ضمن جهودها المستمرة لتشجيع ودعم البرامج والمبادرات التي تعزز التقدم التكنولوجي ونشر الذكاء الاصطناعي والتقنيات المتطورة لرفع قدرة وتنافسية مختلف القطاعات وتعزيز نموها المستدام».
وقال «ضمن النقلة النوعية التي تنفذها الشركة، تلتزم أدنوك بمواصلة الاستثمار في الابتكار والتقنيات والحلول المتقدمة والذكاء الاصطناعي ونشرها عبر قطاعات أعمالها كافة في سعيها لضمان توفير إمدادات آمنة وموثوقة من الطاقة بشكل مسؤول».
المصدر: صحيفة الاتحاد
كلمات دلالية: الإمارات أبوظبي حلبة ياس
إقرأ أيضاً:
الأخلاقيات في الأتمتة: معالجة التحيز في الذكاء الاصطناعي
مع تزايد اعتماد الشركات على الأنظمة الآلية، أصبحت الأخلاقيات مصدر قلق رئيسي. وباتت الخوارزميات تتخذ، بشكل متزايد، القرارات التي كان يتخذها البشر سابقًا، وتؤثر هذه الأنظمة على العديد من مناحي الحياة. تتطلب هذه القوة، التي يملكها الذكاء الاصطناعي، مسؤولية. فبدون قواعد ومعايير أخلاقية واضحة، يمكن للأتمتة أن تُؤدي إلى الظلم وتُسبب الضرر.
يؤثر التحيز وتجاهل الأخلاقيات على الناس بطرق حقيقية. يمكن للأنظمة المتحيزة، على سبيل المثال، أن ترفض منح القروض أو الوظائف أو الرعاية الصحية، ويمكن للأتمتة أن تزيد من سرعة اتخاذ القرارات الخاطئة في حال عدم وجود حواجز حماية. عندما تتخذ الأنظمة قرارًا خاطئًا، غالبًا ما يكون من الصعب الاعتراض عليه أو حتى فهم السبب، ويؤدي غياب الشفافية إلى تحويل الأخطاء الصغيرة إلى مشاكل أكبر.
سبب التحيز في الذكاء الاصطناعي
غالبًا ما ينشأ التحيز في الأتمتة من البيانات. إذا تضمنت البيانات التاريخية تمييزًا، فقد تُكرر الأنظمة المُدربة عليها هذه الأنماط. على سبيل المثال، قد ترفض أداة ذكاء اصطناعي تُستخدم لفحص المتقدمين للوظائف المرشحين بناءً على الجنس أو العرق أو العمر إذا كانت بيانات التدريب الخاصة بها تعكس تلك التحيزات السابقة. ويدخل التحيز أيضًا من خلال التصميم، حيث يمكن للاختيارات المتعلقة بما يجب قياسه، والنتائج التي يجب تفضيلها، وكيفية تصنيف البيانات أن تؤدي إلى نتائج منحرفة.
هناك أنواع عديدة من التحيز. يحدث تحيز العينات عندما لا تُمثل مجموعة البيانات جميع الفئات، بينما قد ينشأ تحيز التصنيف من مدخلات بشرية ذاتية. حتى الخيارات التقنية، مثل نوع الخوارزمية، قد تُشوّه النتائج.
المشاكل ليست نظرية فحسب. فقد تخلت شركة "أمازون" للتجارة الإلكترونية عن استخدام أداة توظيف في عام 2018 بعد أن فضّلت المرشحين الذكور، ووُجد أن بعض أنظمة التعرف على الوجه تُخطئ في تحديد الأشخاص ذوي البشرة الملونة بمعدلات أعلى من غيرهم. تُزعزع هذه المشاكل الثقة في نماذج الذكاء الاصطناعي وتُثير المخاوف.
وهناك مصدر قلق حقيقي آخر. فحتى عندما لا تُستخدم سمات مثل العرق، بشكل مباشر، فإن سمات أخرى مثل الرمز البريدي أو المستوى التعليمي قد تُمثّل بدائل، مما يعني أن النظام قد يُميّز حتى لو بدت المدخلات محايدة، على سبيل المثال، بناءً على المناطق الأكثر ثراءً أو فقرًا. يصعب اكتشاف التحيز دون اختبار دقيق. ويُعدّ ارتفاع حالات تحيز الذكاء الاصطناعي علامة على الحاجة إلى مزيد من الاهتمام بتصميم النظام.
المعايير المهمة
القوانين تُواكب التطور وتحاول معالجة التحيز. يُصنّف قانون الذكاء الاصطناعي للاتحاد الأوروبي، الصادر عام 2024، أنظمة الذكاء الاصطناعي حسب درجة خطورتها. يجب أن تستوفي الأنظمة عالية الخطورة، كتلك المستخدمة في التوظيف أو تقييم الجدارة الائتمانية، متطلبات صارمة، تشمل الشفافية والرقابة البشرية والتحقق من التحيز. في الولايات المتحدة، تعمل الجهات التنظيمية بفاعلية. وتُحذّر لجنة تكافؤ فرص العمل أصحاب العمل من مخاطر أدوات التوظيف المُدارة بالذكاء الاصطناعي، كما أشارت لجنة التجارة الفيدرالية إلى أن الأنظمة المتحيزة قد تُخالف قوانين مكافحة التمييز.
أنظمة أكثر عدالة
لا تنشأ أخلاقيات الأتمتة صدفة، بل تتطلب تخطيطًا دقيقًا، وأدوات مناسبة، واهتمامًا مستمرًا. يجب دمج التحيز والإنصاف في العملية منذ البداية، لا إضافتهما لاحقًا. وهذا يستلزم تحديد الأهداف، واختيار البيانات المناسبة، وإشراك الأطراف المعنية.
يتطلب تحقيق ذلك اتباع بعض الاستراتيجيات الرئيسية:
إجراء تقييمات التحيز
الخطوة الأولى للتغلب على التحيز هي اكتشافه. يجب إجراء تقييمات التحيز مبكرًا وبشكل متكرر، من مرحلة تطوير النموذج إلى نشره، لضمان عدم تحقيق الأنظمة لنتائج غير عادلة. قد تشمل المقاييس القرارات التي يكون لها تأثير أكبر على مجموعة واحدة من غيرها.
يجب أن تُجري جهات خارجية عمليات تدقيق التحيز كلما أمكن ذلك. قد تُغفل المراجعات الداخلية قضايا رئيسية أو تفتقر إلى الاستقلالية، كما أن الشفافية في عمليات التدقيق الموضوعية تبني ثقة الجمهور.
مجموعات بيانات متنوعة
تساعد بيانات التدريب المتنوعة على تقليل التحيز من خلال تضمين عينات من جميع مجموعات المستخدمين، وخاصةً تلك التي غالبًا ما يتم استبعادها. فمساعد صوتي مُدرّب في الغالب على أصوات الرجال لن يُجدي نفعًا مع النساء، ونموذج تقييم الائتمان الذي يفتقر إلى بيانات المستخدمين ذوي الدخل المحدود قد يُسيء تقديرهم.
يساعد تنوع البيانات أيضًا النماذج على التكيف مع الاستخدام الفعلي. ينتمي المستخدمون إلى خلفيات مختلفة، وينبغي أن تعكس الأنظمة ذلك. فالتنوع الجغرافي والثقافي واللغوي جميعها عوامل مهمة. تنوع البيانات لا يكفي بمفرده. فيجب أن تكون دقيقة ومُصنّفة جيدًا.
الشمولية في التصميم
يُشرك التصميم الشامل الأشخاص المتأثرين. ينبغي على المطورين استشارة المستخدمين، وخاصةً المعرضين لخطر الضرر (أو الذين قد يُسببون ضررًا باستخدام الذكاء الاصطناعي المتحيز)، لأن ذلك يُساعد على كشف الجوانب السلبية.
يعني التصميم الشامل أيضًا فرقًا متعددة التخصصات. إن إشراك خبراء الأخلاق والقانون والعلوم الاجتماعية يُمكن أن يُحسّن عملية اتخاذ القرار، لأن هذه الفرق أكثر ميلًا لطرح أسئلة مختلفة ورصد المخاطر.
يجب أن تكون الفرق متنوعة أيضًا. فالأشخاص ذوو التجارب الحياتية المختلفة يكتشفون قضايا مختلفة، والنظام الذي تُنشئه مجموعة متجانسة قد يتغاضى عن مخاطر قد يكتشفها الآخرون.
الخلاصة أن الأتمتة باقية، لكن الثقة في أنظمة الذكاء الاصطناعي تعتمد على عدالة النتائج ووضوح القواعد. إذ قد يُسبب التحيز في أنظمة الذكاء الاصطناعي ضررًا.