غوتيريش: الذكاء الاصطناعي يهدد حرية الصحافة
تاريخ النشر: 4th, May 2025 GMT
حذّر الأمين العام للأمم المتحدة أنطونيو غوتيريش -اليوم السبت- من أن الذكاء الاصطناعي يمثل "تهديدا خطيرا" لحرية الصحافة.
وفي منشور على حسابه بمنصة إكس بمناسبة اليوم العالمي لحرية الصحافة الموافق 3 مايو/أيار من كل عام أشار غوتيريش إلى أن "حرية الصحافة باتت تحت تهديد غير مسبوق".
وقال الأمين العام للأمم المتحدة إن "الذكاء الاصطناعي يمكن أن يدعم حرية التعبير أو يقمعها، الخوارزميات المتحيزة والأكاذيب الفاضحة وخطابات الكراهية هي ألغام مزروعة في الفضاء الإلكتروني".
Press freedom faces an unprecedented threat.
Artificial intelligence can support freedom of expression — or stifle it.
Biased algorithms, outright lies, and hate speech are landmines on the Internet.
Accurate, verifiable, fact-based information is the best tool to defuse them.
— António Guterres (@antonioguterres) May 3, 2025
وشدد غوتيريش على أن أفضل وسيلة لمواجهة التهديدات الرقمية هي الاعتماد على الحقائق المثبتة، مشيرا إلى أهمية الصحافة القائمة على الدقة والحياد.
يذكر أن الجمعية العامة للأمم المتحدة قررت في 1993 اعتماد 3 مايو/أيار يوما عالميا لحرية الصحافة.
إعلانالمصدر: الجزيرة
كلمات دلالية: حريات
إقرأ أيضاً:
الذكاء الاصطناعي يحل لغزًا فيزيائيًا استعصى على العلماء لأكثر من قرن
يتميز THOR AI بقدرته على العمل بسلاسة مع النماذج الذرية الحديثة القائمة على التعلّم الآلي، ما يجعله أداة قابلة للتوسّع في مجالات متعددة، تشمل علوم المواد، والفيزياء، والكيمياء. اعلان
نجح باحثون من جامعة نيو مكسيكو ومختبر لوس ألاموس الوطني في تطوير إطار حسابي مبتكر يُمكّن من حل مشكلة ظلت تُشكل تحديًا جوهريًّا أمام علماء الفيزياء الإحصائية لعقود من الزمن.
ويُعد هذا الإطار، المسمّى "إطار عمل الذكاء الاصطناعي للموترات لتمثيل الكائنات عالية الأبعاد" (THOR)، قفزة نوعية في فهم سلوك المواد تحت ظروف ديناميكية حرارية وميكانيكية معقّدة.
في قلب هذا الإنجاز يكمن التكامل التكويني — وهو معادلة رياضية تُستخدم لوصف التفاعلات بين الجسيمات في الأنظمة الفيزيائية. ويُعد حساب هذا التكامل بدقة أمرًا بالغ الصعوبة، خصوصًا في التطبيقات التي تتضمّن ضغوطًا شديدة أو تحولات طورية، نظرًا لتعقيداته الحسابية الهائلة.
ويقول بويان ألكساندروف، كبير علماء الذكاء الاصطناعي في مختبر لوس ألاموس الوطني والقائد الرئيسي للمشروع: "التكامل التكويني يلتقط تفاعلات الجسيمات، لكن تقييمه دقيقًا كان دائمًا أمرًا بطيئًا ومعقّدًا. إن التحديد الدقيق للسلوك الديناميكي الحراري لا يعمّق فهمنا العلمي للميكانيكا الإحصائية فحسب، بل يزوّدنا أيضًا برؤى حاسمة في مجالات مثل علم المعادن."
تجاوز "لعنة الأبعاد"لعقود، اعتمد الباحثون على طرق تقريبية مثل الديناميكيات الجزيئية ومحاكاة مونت كارلو لتقدير التكامل التكويني. ومع ذلك، فإن هذه الطرق تعاني من ما يُعرف بـ"لعنة الأبعاد"، حيث يزداد التعقيد الحسابي بشكل أُسي مع كل متغير إضافي، حتى إن أسرع الحواسيب العملاقة كانت تفشل في إنتاج نتائج دقيقة في أوقات معقولة. وغالبًا ما كانت هذه المحاكاة تستغرق أسابيع دون أن تحقق دقة كافية.
من جهته لاحظ ديميتر بيتسيف، أستاذ في قسم الهندسة الكيميائية والبيولوجية بجامعة نيو مكسيكو والشريك البحثي لألكساندروف، أن الاستراتيجيات الحسابية الجديدة التي طوّرها الفريق تتيح حلاً مباشرًا للتكامل التكويني — وهي خطوة كانت تُعتبر مستحيلة في سياق الميكانيكا الإحصائية.
ويوضح بيتسيف: "تقليديًا، كان حل التكامل التكويني بشكل مباشر مستحيلًا لأن التكامل غالبًا ما ينطوي على أبعاد تصل إلى الآلاف. التقنيات الكلاسيكية كانت تتطلب أوقاتًا حسابية تتجاوز عمر الكون، حتى باستخدام أحدث الحواسيب. لكن تقنيات شبكة الموتر وضعت معيارًا جديدًا للدقة والكفاءة، يمكن من خلاله قياس جميع الأساليب الأخرى."
ثورة في السرعة والدقةويعتمد THOR AI على تمثيل مكعب البيانات عالي الأبعاد للمتكامل كسلسلة من المكونات الأصغر عبر تقنية رياضية تُعرف بـ"الاستيفاء المتقاطع لقطار الموتر". ويُطبّق البديل المخصّص لهذه الطريقة تماثلات بلورية جوهرية، ما يسمح بحساب التكامل التكويني في ثوانٍ، بدلًا من آلاف الساعات، دون أي تنازل عن الدقة.
وأظهرت الاختبارات أن THOR AI قادر على إعادة إنتاج نتائج أفضل عمليات محاكاة مختبر لوس ألاموس — لكن بسرعة تفوقها بأكثر من 400 مرة. وقد طُبّق الإطار بنجاح على معادن مثل النحاس، وعلى غازات نبيلة تحت ضغط عالٍ مثل الأرجون في حالته البلورية، وكذلك في حساب انتقال الطور الصلب إلى الصلب للقصدير.
أداة متعددة التخصصاتويتميز THOR AI بقدرته على العمل بسلاسة مع النماذج الذرية الحديثة القائمة على التعلّم الآلي، ما يجعله أداة قابلة للتوسّع في مجالات متعددة، تشمل علوم المواد، والفيزياء، والكيمياء.
ويقول دوك ترونج، عالم في مختبر لوس ألاموس والمؤلف الرئيسي للدراسة المنشورة في مجلة "Physical Review Materials": "هذا الاختراق يستبدل عمليات المحاكاة والتقديرات التقريبية للتكامل التكويني التي يعود تاريخها إلى قرن من الزمان بحسابات قائمة على المبادئ الأولى. ويُفتح THOR AI الباب أمام اكتشافات أسرع وفهم أعمق للمواد."
انتقل إلى اختصارات الوصول شارك هذا المقال محادثة