صحار- الرؤية

نظمت جامعة صحار وبالتعاون مع جامعة كوينزلاند الأسترالية، ورشة علمية افتراضية مشتركة بعنوان: "التطبيقات الموثوقة للذكاء الاصطناعي ونماذج اللغة الكبيرة"، عبر تقنية الاتصال المرئي.

وانطلقت الورشة بكملة الأستاذ الدكتور أحمد كايد عميد كلية الحاسوب وتقنية المعلومات بجامعة صحار، حيث ألقى كلمة ترحيبية سلّط فيها الضوء على أهمية التعاون البحثي والدولي في مجالات الذكاء الاصطناعي المتقدمة، ودور مثل هذه المبادرات في رفع مستوى الوعي لدى الباحثين والطلبة.

وأقيمت الورشة بقيادة البروفيسور جو لي، أحد أبرز العلماء المتخصصين في البيانات الضخمة والذكاء الاصطناعي في أستراليا، كما شارك عدد من خبراء جامعة كوينزلاند الذين قدموا عروضًا متقدمة تتناول مفاهيم الذكاء الاصطناعي الموثوق وتطبيقات نماذج اللغة الكبيرة  (LLMs)، إلى جانب استعراض أحدث الاتجاهات والأبحاث في هذا المجال المتطور.

وتهدف الورشة إلى تعزيز وعي الباحثين والطلبة بتقنيات الذكاء الاصطناعي الحديثة، وتسليط الضوء على أهمية بناء أنظمة موثوقة وآمنة تعتمد على نماذج الذكاء الاصطناعي، وفتح المجال لتعزيز التعاون البحثي بين جامعة صحار ومؤسسات أكاديمية مرموقة على المستوى العالمي.

وتأتي هذه الفعالية في إطار التزام جامعة صحار بتوفير بيئة علمية متقدمة تُسهم في تبادل الخبرات الدولية وتطوير الكفاءات البحثية في مجالات التكنولوجيا والابتكار، بما ينسجم مع رؤيتها الاستراتيجية في دعم التحول الرقمي والتميز الأكاديمي.

المصدر: جريدة الرؤية العمانية

إقرأ أيضاً:

الذكاء الاصطناعي يوجه المسيّرات رغم العوائق الطبيعية


في مهمة لإطفاء حرائق الغابات في سلسلة جبال سييرا نيفادا، قد تجد طائرة مسيّرة ذاتية التحكم نفسها تواجه رياح «سانتا آنا» العاتية التي تهدد بإخراجها عن مسارها. التكيف السريع مع مثل هذه التقلبات الجوية غير المتوقعة أثناء الطيران يمثل تحديًا هائلًا لأنظمة التحكم في وضع الطيران الخاصة بهذه الطائرات.
ولمواجهة مثل هذه التحديات، طوّر باحثون في معهد ماساتشوستس للتكنولوجيا «MIT» خوارزمية تحكم تفاعلي جديدة تعتمد على تقنيات تعلّم الآلة، قادرة على تقليل انحراف الطائرة عن مسارها المحدد حتى في مواجهة عوائق مفاجئة مثل هبوب الرياح.

وعلى عكس الطرق التقليدية، لا تتطلب هذه التقنية من المبرمج أن يكون على دراية مسبقة ببنية أو نمط هذه الاضطرابات. بدلاً من ذلك، يتعلم نموذج الذكاء الاصطناعي المستخدم في نظام التحكم كل ما يحتاجه من خلال بيانات ملاحظة تُجمع خلال 15 دقيقة فقط من الطيران.
الميزة الأبرز لهذه التقنية تكمن في أنها تحدد تلقائيًا خوارزمية التحسين الأمثل للتكيف مع هذه الاضطرابات، مما يعزز من دقة تتبع المسار. إذ تختار الخوارزمية الأنسب بحسب طبيعة الاضطرابات التي تواجهها الطائرة في كل حالة.

وقد درّب الباحثون نظامهم على تنفيذ هذين الأمرين معًا، التكيّف وتحديد الخوارزمية باستخدام تقنية تُعرف باسم التعلم الفوقي «meta-learning»، والتي تُعلّم النظام كيفية التكيّف مع أنواع مختلفة من الاضطرابات.
النتائج جاءت واعدة، إذ سجل النظام الجديد نسبة خطأ في تتبع المسار أقل بنسبة 50% مقارنة بالطرق التقليدية، سواء في المحاكاة أو في الظروف الحقيقية، كما أثبت كفاءته في التعامل مع سرعات رياح لم يسبق له مواجهتها أثناء التدريب.

يأمل الباحثون أن يُسهم هذا النظام مستقبلاً في تحسين كفاءة الطائرات المسيّرة في توصيل الطرود الثقيلة رغم الرياح القوية، أو في مراقبة المناطق المعرضة للحرائق في المحميات الطبيعية.
يقول نافيد عزيزيان، الأستاذ المساعد في قسم الهندسة الميكانيكية ومعهد البيانات والنظم والمجتمع «IDSS» بمعهد «MIT»، والباحث الرئيسي للدراسة: «قوة طريقتنا تكمن في التعلم المتزامن لمكونات النظام. من خلال الاستفادة من التعلم الفوقي، يتمكن نظامنا من اتخاذ قرارات تلقائية تحقق أفضل تكيف ممكن في وقت قصير».

شارك عزيزيان في إعداد الورقة البحثية كل من سونبوتشين تانغ، طالب دراسات عليا في قسم الطيران والفضاء، وهاويان صن، طالب دراسات عليا في قسم الهندسة الكهربائية وعلوم الحاسوب. وقد عُرض البحث مؤخراً في مؤتمر «التعلم للديناميكيات والتحكم»

التعلم على التكيف
تتغير سرعات الرياح التي قد تواجهها الطائرة في كل رحلة، لكن من المفترض أن تبقى الشبكة العصبية ودالة الانحدار المستخدمة ثابتتين، لتجنّب إعادة التدريب في كل مرة.
لتحقيق هذه المرونة، اعتمد الباحثون على التعلم الفوقي، ودربوا النظام على مجموعة من سيناريوهات الرياح المختلفة أثناء مرحلة التدريب.

أخبار ذات صلة سيتي يتعاقد مع النجم الفرنسي الشاب ريان شرقي انقطاع الكهرباء في جزيرة بالما الإسبانية

يوضح تانغ: «الهدف ليس فقط أن يتكيف النظام، بل أن يتعلم كيف يتعلم. عبر التعلم الفوقي، يمكننا إنشاء تمثيل مشترك من بيانات متعددة السيناريوهات بسرعة وكفاءة».
في التطبيق العملي، يقوم المستخدم بتغذية نظام التحكم بمسار الطيران المطلوب، ويقوم النظام بحساب قوة الدفع اللازم في الزمن الحقيقي لإبقاء الطائرة على المسار رغم أي اضطرابات جوية.

وقد أثبت النظام كفاءته سواء في المحاكاة أو في اختبارات حقيقية، حيث تفوق على جميع الطرق التقليدية في تتبع المسار، حتى في الظروف الجوية القاسية.
يضيف عزيزيان: «حتى عندما تجاوزت قوة الرياح مستويات لم نشهدها في التدريب، أثبتت تقنيتنا قدرتها على التعامل معها بكفاءة».

واللافت أن تفوق النظام على الطرق الأخرى ازداد كلما زادت شدة الرياح، مما يدل على قدرته على التكيف مع البيئات الصعبة.
ويجري الفريق الآن تجارب ميدانية على طائرات مسيّرة حقيقية لاختبار النظام في مواجهة ظروف جوية متنوعة.

كما يسعى الفريق لتوسيع قدرات النظام ليتعامل مع اضطرابات متعددة المصادر في وقت واحد. فعلى سبيل المثال، تغير سرعة الرياح قد يغيّر من توزيع وزن الحمولة أثناء الطيران، خصوصاً عند حمل مواد سائلة.
كما يطمح الباحثون إلى تطوير خاصية التعلم المستمر، بحيث يتمكن النظام من التكيف مع اضطرابات جديدة دون الحاجة إلى إعادة تدريبه على البيانات السابقة.

وفي تعليق على البحث، قال بروفيسور باباك حسّیبي من معهد كاليفورنيا للتكنولوجيا «Caltech»، والذي لم يشارك في المشروع: «نجح نافيد وزملاؤه في الجمع بين التعلم الفوقي والتحكم التكيفي التقليدي، لتعلم الخصائص غير الخطية من البيانات. واستخدامهم لخوارزميات الانحدار المرآتي مكّنهم من استغلال البنية الجيومترية الكامنة للمشكلة بشكل لم تفعله الطرق السابقة. وهذا العمل قد يساهم بشكل كبير في تصميم أنظمة ذاتية التشغيل تعمل بكفاءة في بيئات معقدة وغير مؤكدة».
وقد حصل هذا البحث على دعم من عدة جهات، منها شركة «MathWorks»، ومختبر «MIT-IBM Watson» للذكاء الاصطناعي، ومركز «MIT-Amazon» للعلوم، وبرنامج «MIT-Google» للابتكار في الحوسبة.

مقالات مشابهة

  • السبع يوضح أهم مميزات ⁧‫الذكاء الاصطناعي‬⁩ في نظام ⁦‪ iOS 26
  • الذكاء الاصطناعي يوجه المسيّرات رغم العوائق الطبيعية
  • تعرف على أبرز الوظائف المستقبلية في عصر الذكاء الاصطناعي
  • ابي خليل وصحناوي قدما اقتراح قانون حول إنشاء الهيئة الوطنية للذكاء الاصطناعي
  • آبل تُشغّل الذكاء الاصطناعي بدون إنترنت.. نقلة تاريخية في عالم التطبيقات
  • “شبكة العنكبوت”: الحرب في عصر الذكاء الاصطناعي
  • كيف يساعد الذكاء الاصطناعي على إنقاص الوزن؟
  • هل يجوز للذكاء الاصطناعي كتابة الأبحاث العلمية؟ العلماء منقسمون
  • ميتا تبحث استثمار مليارات الدولارات في شركة ناشئة للذكاء الاصطناعي
  • "فيفا" تنظّم النسخة الثانية من ورشة الحماية في كرة القدم بالمغرب