النوم غير المنتظم يزيد فرص الإصابة بنوبة قلبية أو سكتة دماغية
تاريخ النشر: 30th, November 2024 GMT
المناطق_متابعات
أفادت دراسة طبية حديثة بأن الأشخاص الذين يعانون من نمط نوم غير منتظم، قد يكونون أكثر عرضة للإصابة بنوبة قلبية أو سكتة دماغية.
وقالت الدراسة التي نشرت في دورية Journal of Epidemiology & Community Health، إن الأشخاص الذين ينامون ويستيقظون في أوقات متباينة بشكل كبير يوميا، لديهم خطر متزايد بنسبة 26 بالمئة للإصابة بحالة طبية قلبية مميتة محتملة.
ووجد الباحثون أن هذا الخطر المرتفع يحدث بغض النظر عما إذا كان هؤلاء الأشخاص يحصلون على مدة النوم الموصى بها (سبع إلى تسع ساعات) كل ليلة وفقا لـ “سكاي نيوز عربية”.
وخلص فريق الباحثين، بقيادة جان فيليب شابو، كبير العلماء في معهد أبحاث مستشفى الأطفال بشرق أونتاريو في كندا، إلى أن “انتظام النوم قد يكون أكثر أهمية من مدة النوم الكافية من حيث خطر الإصابة بأمراض القلب الوعائية”.
وخلال الدراسة، قام الباحثون بتحليل بيانات أكثر من 72000 شخص، ارتدوا أجهزة تتبع النشاط لمدة سبعة أيام لتسجيل أنماط نومهم.
وبناء على هذه البيانات، قام الباحثون بحساب درجة انتظام نومهم، حسبما نقلت وكالة “يو بي آي” للأنباء.
وتوصل الباحثون إلى أن الأشخاص الذين يعانون من أنماط نوم شديدة التباين (ينامون ويستيقظون في أوقات مختلفة كل يوم) كانوا أكثر عرضة للإصابة بنوبة قلبية، أو سكتة دماغية، أو الوفاة المرتبطة بمشكلات قلبية.
وأظهر التحليل أن نسبة أكبر من الأشخاص الذين ينامون بانتظام حصلوا على مدة النوم الموصى بها (61 بالمئة) مقارنة بـ 48 بالمئة من الأشخاص ذوي النوم غير المنتظم.
وافترض الباحثون أن أنماط النوم غير المنتظمة قد تؤثر سلبا على صحة القلب عن طريق تعطيل كيفية تنظيم الجسم لمستويات السكر في الدم، والكوليسترول، ومقاومة الالتهابات، ووظائف الجهاز المناعي
المصدر: صحيفة المناطق السعودية
كلمات دلالية: النوم غير المنتظم الأشخاص الذین
إقرأ أيضاً:
الذكاء الاصطناعي يوجه المسيّرات رغم العوائق الطبيعية
في مهمة لإطفاء حرائق الغابات في سلسلة جبال سييرا نيفادا، قد تجد طائرة مسيّرة ذاتية التحكم نفسها تواجه رياح «سانتا آنا» العاتية التي تهدد بإخراجها عن مسارها. التكيف السريع مع مثل هذه التقلبات الجوية غير المتوقعة أثناء الطيران يمثل تحديًا هائلًا لأنظمة التحكم في وضع الطيران الخاصة بهذه الطائرات.
ولمواجهة مثل هذه التحديات، طوّر باحثون في معهد ماساتشوستس للتكنولوجيا «MIT» خوارزمية تحكم تفاعلي جديدة تعتمد على تقنيات تعلّم الآلة، قادرة على تقليل انحراف الطائرة عن مسارها المحدد حتى في مواجهة عوائق مفاجئة مثل هبوب الرياح.
وعلى عكس الطرق التقليدية، لا تتطلب هذه التقنية من المبرمج أن يكون على دراية مسبقة ببنية أو نمط هذه الاضطرابات. بدلاً من ذلك، يتعلم نموذج الذكاء الاصطناعي المستخدم في نظام التحكم كل ما يحتاجه من خلال بيانات ملاحظة تُجمع خلال 15 دقيقة فقط من الطيران.
الميزة الأبرز لهذه التقنية تكمن في أنها تحدد تلقائيًا خوارزمية التحسين الأمثل للتكيف مع هذه الاضطرابات، مما يعزز من دقة تتبع المسار. إذ تختار الخوارزمية الأنسب بحسب طبيعة الاضطرابات التي تواجهها الطائرة في كل حالة.
وقد درّب الباحثون نظامهم على تنفيذ هذين الأمرين معًا، التكيّف وتحديد الخوارزمية باستخدام تقنية تُعرف باسم التعلم الفوقي «meta-learning»، والتي تُعلّم النظام كيفية التكيّف مع أنواع مختلفة من الاضطرابات.
النتائج جاءت واعدة، إذ سجل النظام الجديد نسبة خطأ في تتبع المسار أقل بنسبة 50% مقارنة بالطرق التقليدية، سواء في المحاكاة أو في الظروف الحقيقية، كما أثبت كفاءته في التعامل مع سرعات رياح لم يسبق له مواجهتها أثناء التدريب.
يأمل الباحثون أن يُسهم هذا النظام مستقبلاً في تحسين كفاءة الطائرات المسيّرة في توصيل الطرود الثقيلة رغم الرياح القوية، أو في مراقبة المناطق المعرضة للحرائق في المحميات الطبيعية.
يقول نافيد عزيزيان، الأستاذ المساعد في قسم الهندسة الميكانيكية ومعهد البيانات والنظم والمجتمع «IDSS» بمعهد «MIT»، والباحث الرئيسي للدراسة: «قوة طريقتنا تكمن في التعلم المتزامن لمكونات النظام. من خلال الاستفادة من التعلم الفوقي، يتمكن نظامنا من اتخاذ قرارات تلقائية تحقق أفضل تكيف ممكن في وقت قصير».
شارك عزيزيان في إعداد الورقة البحثية كل من سونبوتشين تانغ، طالب دراسات عليا في قسم الطيران والفضاء، وهاويان صن، طالب دراسات عليا في قسم الهندسة الكهربائية وعلوم الحاسوب. وقد عُرض البحث مؤخراً في مؤتمر «التعلم للديناميكيات والتحكم»
التعلم على التكيف
تتغير سرعات الرياح التي قد تواجهها الطائرة في كل رحلة، لكن من المفترض أن تبقى الشبكة العصبية ودالة الانحدار المستخدمة ثابتتين، لتجنّب إعادة التدريب في كل مرة.
لتحقيق هذه المرونة، اعتمد الباحثون على التعلم الفوقي، ودربوا النظام على مجموعة من سيناريوهات الرياح المختلفة أثناء مرحلة التدريب.
يوضح تانغ: «الهدف ليس فقط أن يتكيف النظام، بل أن يتعلم كيف يتعلم. عبر التعلم الفوقي، يمكننا إنشاء تمثيل مشترك من بيانات متعددة السيناريوهات بسرعة وكفاءة».
في التطبيق العملي، يقوم المستخدم بتغذية نظام التحكم بمسار الطيران المطلوب، ويقوم النظام بحساب قوة الدفع اللازم في الزمن الحقيقي لإبقاء الطائرة على المسار رغم أي اضطرابات جوية.
وقد أثبت النظام كفاءته سواء في المحاكاة أو في اختبارات حقيقية، حيث تفوق على جميع الطرق التقليدية في تتبع المسار، حتى في الظروف الجوية القاسية.
يضيف عزيزيان: «حتى عندما تجاوزت قوة الرياح مستويات لم نشهدها في التدريب، أثبتت تقنيتنا قدرتها على التعامل معها بكفاءة».
واللافت أن تفوق النظام على الطرق الأخرى ازداد كلما زادت شدة الرياح، مما يدل على قدرته على التكيف مع البيئات الصعبة.
ويجري الفريق الآن تجارب ميدانية على طائرات مسيّرة حقيقية لاختبار النظام في مواجهة ظروف جوية متنوعة.
كما يسعى الفريق لتوسيع قدرات النظام ليتعامل مع اضطرابات متعددة المصادر في وقت واحد. فعلى سبيل المثال، تغير سرعة الرياح قد يغيّر من توزيع وزن الحمولة أثناء الطيران، خصوصاً عند حمل مواد سائلة.
كما يطمح الباحثون إلى تطوير خاصية التعلم المستمر، بحيث يتمكن النظام من التكيف مع اضطرابات جديدة دون الحاجة إلى إعادة تدريبه على البيانات السابقة.
وفي تعليق على البحث، قال بروفيسور باباك حسّیبي من معهد كاليفورنيا للتكنولوجيا «Caltech»، والذي لم يشارك في المشروع: «نجح نافيد وزملاؤه في الجمع بين التعلم الفوقي والتحكم التكيفي التقليدي، لتعلم الخصائص غير الخطية من البيانات. واستخدامهم لخوارزميات الانحدار المرآتي مكّنهم من استغلال البنية الجيومترية الكامنة للمشكلة بشكل لم تفعله الطرق السابقة. وهذا العمل قد يساهم بشكل كبير في تصميم أنظمة ذاتية التشغيل تعمل بكفاءة في بيئات معقدة وغير مؤكدة».
وقد حصل هذا البحث على دعم من عدة جهات، منها شركة «MathWorks»، ومختبر «MIT-IBM Watson» للذكاء الاصطناعي، ومركز «MIT-Amazon» للعلوم، وبرنامج «MIT-Google» للابتكار في الحوسبة.