نبه النجم الأميركي، توم هانكس، والمذيعة التلفزيونية، غايل كينغ، معجبيهما إلى تداول إعلانين ترويجيين يستخدمان شكليهما وصوتيهما بفضل تقنيات الذكاء الاصطناعي من دون استئذانهما. 

وكتب هانكس عبر صفحته على شبكة "إنستغرام": "حذار! ثمة مقطع فيديو متداول للترويج لتأمين على الأسنان، باستخدام نسخة ذكاء اصطناعي مني.

لا علاقة لي بالأمر".

كما نشرت كينغ، التي تشارك في تقديم البرنامج الصباحي على قناة "سي بي إس" الأميركية، تحذيراً مماثلاً على "إنستغرام".

وكتبت في تعليق على مقطع فيديو تبدو فيه وكأنها تروّج لمنتج لإنقاص الوزن: "لا يتوقف الناس عن إرسال هذا الفيديو لي ويطرحون عليّ أسئلة عن هذا المنتج، رغم أن لا علاقة لي إطلاقاً بهذه الشركة".

جرائم الذكاء الاصطناعي.. والدا ضحية يكشفان لـ"الحرة" كيفية تجريد طفلتهما من ملابسها "الصور التي انتشرت واقعية إلى حد كبير والذكاء الاصطناعي قام بعمله على أكمل وجه"، هكذا علقت الطبيبة الإسبانية، ميريام الأديب منداري، على انتشار "صور عارية مفبركة" لابنتها صاحبة الـ14 عاما، ما تسبب في تعرضها لـ"التحرش والابتزاز"، بينما يكشف خبير عن جرائم تلك الأنظمة الذكية وسبل الوقاية منها.

ونشرت كينغ أيضاً مقطع الفيديو الأصلي الذي استند إليه المحتالون، وكانت تروّج فيه لبرنامج إذاعي في 31 أغسطس الماضي.

وأضافت: "لقد تلاعبوا بصوتي والفيديو ليجعلوا الأمر يبدو وكأنني أروج لهذا المنتج.. لم أسمع قط عن هذا المنتج ولم أستخدمه يوماً".

وختمت بالقول: "لا تقعوا  في فخ مقاطع الفيديو هذه القائمة على الذكاء الاصطناعي"

وتولى نشر مقطع الفيديو الذي أشارت إليه غايل مستخدم يحمل اسم Artipet (أرتيبت)، لكن عمليات بحث على "إنستغرام" و"غوغل" لا تسفر عن أي نتائج تشير إلى منتجات الحمية هذه.

وبات الذكاء الاصطناعي يتيح منذ سنوات اللجوء إلى "التزييف العميق"، أي التلاعب بصور وأصوات، لجعل أصحابها يقولون أو يفعلون أشياء لم تحدث في الواقع.

الذكاء الاصطناعي لمحاربة التنمر الإلكتروني عبر إنستغرام ستعمل الخاصية على تنبيه المستخدمين ما إن كانت تعليقاتهم مسيئة للبعض، ليتمكنوا من تغييرها إلى الأفضل قبل النشر.

ولم تكن هذه التزييفات العميقة في بداياتها مقنعة، لكنها أصبحت تتسم بواقعية شديدة مع ظهور الذكاء الاصطناعي التوليدي، الذي يتيح إنتاج المحتويات بكل أنواعها، ومنها الفيديو، بناءً على أوامر بسيطة. 

المصدر: الحرة

إقرأ أيضاً:

الأخلاقيات في الأتمتة: معالجة التحيز في الذكاء الاصطناعي

مع تزايد اعتماد الشركات على الأنظمة الآلية، أصبحت الأخلاقيات مصدر قلق رئيسي. وباتت الخوارزميات تتخذ، بشكل متزايد، القرارات التي كان يتخذها البشر سابقًا، وتؤثر هذه الأنظمة على العديد من مناحي الحياة. تتطلب هذه القوة، التي يملكها الذكاء الاصطناعي، مسؤولية. فبدون قواعد ومعايير أخلاقية واضحة، يمكن للأتمتة أن تُؤدي إلى الظلم وتُسبب الضرر.
يؤثر التحيز وتجاهل الأخلاقيات على الناس بطرق حقيقية. يمكن للأنظمة المتحيزة، على سبيل المثال، أن ترفض منح القروض أو الوظائف أو الرعاية الصحية، ويمكن للأتمتة أن تزيد من سرعة اتخاذ القرارات الخاطئة في حال عدم وجود حواجز حماية. عندما تتخذ الأنظمة قرارًا خاطئًا، غالبًا ما يكون من الصعب الاعتراض عليه أو حتى فهم السبب، ويؤدي غياب الشفافية إلى تحويل الأخطاء الصغيرة إلى مشاكل أكبر.
سبب التحيز في الذكاء الاصطناعي
غالبًا ما ينشأ التحيز في الأتمتة من البيانات. إذا تضمنت البيانات التاريخية تمييزًا، فقد تُكرر الأنظمة المُدربة عليها هذه الأنماط. على سبيل المثال، قد ترفض أداة ذكاء اصطناعي تُستخدم لفحص المتقدمين للوظائف المرشحين بناءً على الجنس أو العرق أو العمر إذا كانت بيانات التدريب الخاصة بها تعكس تلك التحيزات السابقة. ويدخل التحيز أيضًا من خلال التصميم، حيث يمكن للاختيارات المتعلقة بما يجب قياسه، والنتائج التي يجب تفضيلها، وكيفية تصنيف البيانات أن تؤدي إلى نتائج منحرفة.
هناك أنواع عديدة من التحيز. يحدث تحيز العينات عندما لا تُمثل مجموعة البيانات جميع الفئات، بينما قد ينشأ تحيز التصنيف من مدخلات بشرية ذاتية. حتى الخيارات التقنية، مثل نوع الخوارزمية، قد تُشوّه النتائج.
المشاكل ليست نظرية فحسب. فقد تخلت شركة "أمازون" للتجارة الإلكترونية عن استخدام أداة توظيف في عام 2018 بعد أن فضّلت المرشحين الذكور، ووُجد أن بعض أنظمة التعرف على الوجه تُخطئ في تحديد الأشخاص ذوي البشرة الملونة بمعدلات أعلى من غيرهم. تُزعزع هذه المشاكل الثقة في نماذج الذكاء الاصطناعي وتُثير المخاوف.
وهناك مصدر قلق حقيقي آخر. فحتى عندما لا تُستخدم سمات مثل العرق، بشكل مباشر، فإن سمات أخرى مثل الرمز البريدي أو المستوى التعليمي قد تُمثّل بدائل، مما يعني أن النظام قد يُميّز حتى لو بدت المدخلات محايدة، على سبيل المثال، بناءً على المناطق الأكثر ثراءً أو فقرًا. يصعب اكتشاف التحيز دون اختبار دقيق. ويُعدّ ارتفاع حالات تحيز الذكاء الاصطناعي علامة على الحاجة إلى مزيد من الاهتمام بتصميم النظام.
المعايير المهمة
القوانين تُواكب التطور وتحاول معالجة التحيز. يُصنّف قانون الذكاء الاصطناعي للاتحاد الأوروبي، الصادر عام 2024، أنظمة الذكاء الاصطناعي حسب درجة خطورتها. يجب أن تستوفي الأنظمة عالية الخطورة، كتلك المستخدمة في التوظيف أو تقييم الجدارة الائتمانية، متطلبات صارمة، تشمل الشفافية والرقابة البشرية والتحقق من التحيز. في الولايات المتحدة، تعمل الجهات التنظيمية بفاعلية. وتُحذّر لجنة تكافؤ فرص العمل أصحاب العمل من مخاطر أدوات التوظيف المُدارة بالذكاء الاصطناعي، كما أشارت لجنة التجارة الفيدرالية إلى أن الأنظمة المتحيزة قد تُخالف قوانين مكافحة التمييز.
أنظمة أكثر عدالة
لا تنشأ أخلاقيات الأتمتة صدفة، بل تتطلب تخطيطًا دقيقًا، وأدوات مناسبة، واهتمامًا مستمرًا. يجب دمج التحيز والإنصاف في العملية منذ البداية، لا إضافتهما لاحقًا. وهذا يستلزم تحديد الأهداف، واختيار البيانات المناسبة، وإشراك الأطراف المعنية.
يتطلب تحقيق ذلك اتباع بعض الاستراتيجيات الرئيسية:
إجراء تقييمات التحيز
الخطوة الأولى للتغلب على التحيز هي اكتشافه. يجب إجراء تقييمات التحيز مبكرًا وبشكل متكرر، من مرحلة تطوير النموذج إلى نشره، لضمان عدم تحقيق الأنظمة لنتائج غير عادلة. قد تشمل المقاييس القرارات التي يكون لها تأثير أكبر على مجموعة واحدة من غيرها.
يجب أن تُجري جهات خارجية عمليات تدقيق التحيز كلما أمكن ذلك. قد تُغفل المراجعات الداخلية قضايا رئيسية أو تفتقر إلى الاستقلالية، كما أن الشفافية في عمليات التدقيق الموضوعية تبني ثقة الجمهور.
مجموعات بيانات متنوعة
تساعد بيانات التدريب المتنوعة على تقليل التحيز من خلال تضمين عينات من جميع مجموعات المستخدمين، وخاصةً تلك التي غالبًا ما يتم استبعادها. فمساعد صوتي مُدرّب في الغالب على أصوات الرجال لن يُجدي نفعًا مع النساء، ونموذج تقييم الائتمان الذي يفتقر إلى بيانات المستخدمين ذوي الدخل المحدود قد يُسيء تقديرهم.
يساعد تنوع البيانات أيضًا النماذج على التكيف مع الاستخدام الفعلي. ينتمي المستخدمون إلى خلفيات مختلفة، وينبغي أن تعكس الأنظمة ذلك. فالتنوع الجغرافي والثقافي واللغوي جميعها عوامل مهمة. تنوع البيانات لا يكفي بمفرده. فيجب أن تكون دقيقة ومُصنّفة جيدًا.
الشمولية في التصميم
يُشرك التصميم الشامل الأشخاص المتأثرين. ينبغي على المطورين استشارة المستخدمين، وخاصةً المعرضين لخطر الضرر (أو الذين قد يُسببون ضررًا باستخدام الذكاء الاصطناعي المتحيز)، لأن ذلك يُساعد على كشف الجوانب السلبية.
يعني التصميم الشامل أيضًا فرقًا متعددة التخصصات. إن إشراك خبراء الأخلاق والقانون والعلوم الاجتماعية يُمكن أن يُحسّن عملية اتخاذ القرار، لأن هذه الفرق أكثر ميلًا لطرح أسئلة مختلفة ورصد المخاطر.
يجب أن تكون الفرق متنوعة أيضًا. فالأشخاص ذوو التجارب الحياتية المختلفة يكتشفون قضايا مختلفة، والنظام الذي تُنشئه مجموعة متجانسة قد يتغاضى عن مخاطر قد يكتشفها الآخرون.
الخلاصة أن الأتمتة باقية، لكن الثقة في أنظمة الذكاء الاصطناعي تعتمد على عدالة النتائج ووضوح القواعد. إذ قد يُسبب التحيز في أنظمة الذكاء الاصطناعي ضررًا.

أخبار ذات صلة الذكاء الاصطناعي.. إلى أين يقود العالم؟ طحنون بن زايد يلتقي مايك بلومبرغ المصدر: الاتحاد - أبوظبي

مقالات مشابهة

  • وليد علاء الدين: الشعراء أول مَن وضع أسس الذكاء الاصطناعي!
  • الذكاء الاصطناعي يثير ضجة حول عادل إمام
  • الأخلاقيات في الأتمتة: معالجة التحيز في الذكاء الاصطناعي
  • الذكاء الاصطناعي يقلب موازين البحث في في غوغل
  • الذكاء الاصطناعي.. إلى أين يقود العالم؟
  • الذكاء الاصطناعي يدخل عالم التسوق
  • مستشار وزير الرياضة والشباب يشارك بمؤتمر الذكاء الاصطناعي في الرياضة بإمارة دبي
  • الذكاء الاصطناعي والدراما العراقية.. صراع بين تطور التقنية السريع وبطء الواقع
  • حمدي المرغني يشارك جمهوره مقطع فيديو يجمعه بالفنان الراحل سليمان عيد
  • الذكاء الاصطناعي واقـــع لا مفـــرّ منـــه